Trends, variability and predictive skill of the ocean heat content in North Atlantic: an analysis with the EC-Earth3 model

Author:

Carmo-Costa TeresaORCID,Bilbao Roberto,Ortega Pablo,Teles-Machado Ana,Dutra Emanuel

Abstract

AbstractThis study investigates linear trends, variability and predictive skill of the upper ocean heat content (OHC) in the North Atlantic basin. This is a region where strong decadal variability superimposes the externally forced trends, introducing important differences in the local warming rates and leading in the case of the Central Subpolar North Atlantic to an overall long-term cooling. Our analysis aims to better understand these regional differences, by investigating how internal and forced variability contribute to local trends, exploring also their role on the local prediction skill. The analysis combines the study of three ocean reanalyses to document the uncertainties related to observations with two sets of CMIP6 experiments performed with the global coupled climate model EC-Earth3: a historical ensemble to characterise the forced signals, and a retrospective decadal prediction system to additionally characterise the contributions from internal climate variability. Our results show that internal variability is essential to understand the spatial pattern of North Atlantic OHC trends, contributing decisively to the local trends and providing high levels of predictive skill in the Eastern Subpolar North Atlantic and the Irminger and Iceland Seas, and to a lesser extent in the Labrador Sea. Skill and trends in other areas like the Subtropical North Atlantic, or the Gulf Stream Extension are mostly externally forced. Large observational and modeling uncertainties affect the trends and interannual variability in the Central Subpolar North Atlantic, the only region exhibiting a cooling during the study period, uncertainties that might explain the very poor local predictive skill.

Funder

Fundação para a Ciência e a Tecnologia

H2020 European Comission EUCP

Ministerio de Economía y Competitividad

joint programmin initiative ocean

programa operacional mar2020

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

Reference74 articles.

1. Abraham JP, Baringer M, Bindoff NL, Boyer T, Cheng LJ, Church JA, Conroy JL, Domingues CM, Fasullo JT, Gilson J, Goni G, Good SA, Gorman JM, Gouretski V, Ishii M, Johnson GC, Kizu S, Lyman JM, Macdonald AM, Minkowycz WJ, Moffitt SE, Palmer MD, Piola AR, Reseghetti F, Schuckmann K, Trenberth KE, Velicogna I, Willis JK (2013) A review of global ocean temperature observations: implications for ocean heat content estimates and climate change. Rev Geophys 51(3):450–483. https://doi.org/10.1002/rog.20022, https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/rog.20022

2. Balmaseda MA, Mogensen K, Weaver AT (2013) Evaluation of the ECMWF ocean reanalysis system ORAS4. Q J R Meteorol Soc 139:1132–1161. https://doi.org/10.1002/qj.2063

3. Barnston AG (1994) Linear statistical short-term climate predictive skill in the northern hemisphere. J Clim 7(10):1513–1564. https://doi.org/10.1175/1520-0442(1994)007<1513:LSSTCP>2.0.CO;2, https://journals.ametsoc.org/view/journals/clim/7/10/1520-0442_1994_007_1513_lsstcp_2_0_co_2.xml

4. Bilbao RAF, Gregory JM, Bouttes N, Palmer MD, Stott P (2019) Attribution of ocean temperature change to anthropogenic and natural forcings using the temporal, vertical and geographical structure. Clim Dyn 53(9):5389–5413. https://doi.org/10.1007/s00382-019-04910-1

5. Bilbao R, Wild S, Ortega P, Acosta-Navarro J, Arsouze T, Bretonnière PA, Caron LP, Castrillo M, Cruz-García R, Cvijanovic I, Doblas-Reyes FJ, Donat M, Dutra E, Echevarría P, Ho AC, Loosveldt-Tomas S, Moreno-Chamarro E, Pérez-Zanon N, Ramos A, Ruprich-Robert Y, Sicardi V, Tourigny E, Vegas-Regidor J (2020) Assessment of a full-field initialised decadal climate prediction system with the CMIP6 version of EC-Earth. Earth Syst Dyn Discuss 2020:1–30. https://doi.org/10.5194/esd-2020-66, https://esd.copernicus.org/preprints/esd-2020-66/

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3