Greenhouse-gas forced changes in the Atlantic meridional overturning circulation and related worldwide sea-level change

Author:

Couldrey Matthew P.ORCID,Gregory Jonathan M.,Dong Xiao,Garuba Oluwayemi,Haak Helmuth,Hu Aixue,Hurlin William J.,Jin Jiangbo,Jungclaus Johann,Köhl Armin,Liu Hailong,Ojha Sayantani,Saenko Oleg A.,Savita Abhishek,Suzuki Tatsuo,Yu Zipeng,Zanna Laure

Abstract

AbstractThe effect of anthropogenic climate change in the ocean is challenging to project because atmosphere-ocean general circulation models (AOGCMs) respond differently to forcing. This study focuses on changes in the Atlantic Meridional Overturning Circulation (AMOC), ocean heat content ($$\Delta$$ Δ OHC), and the spatial pattern of ocean dynamic sea level ($$\Delta \zeta$$ Δ ζ ). We analyse experiments following the FAFMIP protocol, in which AOGCMs are forced at the ocean surface with standardised heat, freshwater and momentum flux perturbations, typical of those produced by doubling $$\hbox {CO}_{{2}}$$ CO 2 . Using two new heat-flux-forced experiments, we find that the AMOC weakening is mainly caused by and linearly related to the North Atlantic heat flux perturbation, and further weakened by a positive coupled heat flux feedback. The quantitative relationships are model-dependent, but few models show significant AMOC change due to freshwater or momentum forcing, or to heat flux forcing outside the North Atlantic. AMOC decline causes warming at the South Atlantic-Southern Ocean interface. It does not strongly affect the global-mean vertical distribution of $$\Delta$$ Δ OHC, which is dominated by the Southern Ocean. AMOC decline strongly affects $$\Delta \zeta$$ Δ ζ in the North Atlantic, with smaller effects in the Southern Ocean and North Pacific. The ensemble-mean $$\Delta \zeta$$ Δ ζ and $$\Delta$$ Δ OHC patterns are mostly attributable to the heat added by the flux perturbation, with smaller effects from ocean heat and salinity redistribution. The ensemble spread, on the other hand, is largely due to redistribution, with pronounced disagreement among the AOGCMs.

Funder

Natural Environment Research Council

National Natural Science Foundation of China

Max-Planck-Gesellschaft

Biological and Environmental Research

Deutsche Forschungsgemeinschaft

Australian Research Council

Commonwealth Scientific and Industrial Research Organisation

Ministry of Education, Culture, Sports, Science and Technology

Division of Ocean Sciences

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3