Assessing the large-scale drivers of precipitation in the northeastern United States via linear orthogonal decomposition

Author:

Sukhdeo RaymondORCID,Ullrich Paul A.ORCID,Grotjahn RichardORCID

Abstract

AbstractThis study examines the linear orthogonal modes associated with monthly precipitation in the northeastern United States, from CESM1 LENS (35 ensemble members, 1979–2005) and two reanalysis datasets (ERA5, 1950–2018 and NOAA-CIRES-DOE 20CRv3, 1950–2015). Calendar months are aggregated together, and any linear trends in data are removed. Using region-averaged precipitation anomaly time series and monthly anomalies for several global 2D atmospheric fields, a linear orthogonal decomposition method is implemented to iteratively extract time series (based on field and geographic location) of absolute maximum correlation. Linear modes associated with this method are then projected onto the full set of 2D fields to provide physical insight into the mechanisms involved in generating precipitation. In this region, the first mode is associated with vapor transport from the Atlantic seaboard, the second mode is characterized by westward vapor transport associated with extratropical cyclones, and the third mode captures vapor transport from the Gulf of Mexico during the fall and winter. However, the third mode is less robust in the spring and summer. Results are generally consistent across the datasets, and applying multiple linear regression with the linear modes to predict the precipitation anomalies produces R-squared values of around 0.54–0.65 for CESM1 LENS, and around 0.58–0.88 for reanalysis, with the lowest values generally in the spring and late summer. The influence of low-frequency climate variability on the modes is considered for CESM1 LENS, and the modes in late winter can be predicted with some success via a combination of several, prominent large-scale teleconnection patterns.

Funder

department of energy office of science

national institute of food and agriculture, u.s. department of agriculture, hatch project under california agricultural experiment station project accession

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3