How accurately can the climate sensitivity to $$\hbox {CO}_{2}$$ be estimated from historical climate change?

Author:

Gregory J. M.ORCID,Andrews T.,Ceppi P.,Mauritsen T.,Webb M. J.

Abstract

Abstract The equilibrium climate sensitivity (ECS, in K) to $$\hbox {CO}_{2}$$CO2 doubling is a large source of uncertainty in projections of future anthropogenic climate change. Estimates of ECS made from non-equilibrium states or in response to radiative forcings other than $$\hbox {2}\times \hbox {CO}_{2}$$2×CO2 are called “effective climate sensitivity” (EffCS, in K). Taking a “perfect-model” approach, using coupled atmosphere–ocean general circulation model (AOGCM) experiments, we evaluate the accuracy with which $$\hbox {CO}_{2}$$CO2 EffCS can be estimated from climate change in the “historical” period (since about 1860). We find that (1) for statistical reasons, unforced variability makes the estimate of historical EffCS both uncertain and biased; it is overestimated by about 10% if the energy balance is applied to the entire historical period, 20% for 30-year periods, and larger factors for interannual variability, (2) systematic uncertainty in historical radiative forcing translates into an uncertainty of $${\pm }\,30\, {\rm to} \,45\%$$±30to45% (standard deviation) in historical EffCS, (3) the response to the changing relative importance of the forcing agents, principally $$\hbox {CO}_{2}$$CO2 and volcanic aerosol, causes historical EffCS to vary over multidecadal timescales by a factor of two. In recent decades it reached its maximum in the AOGCM historical experiment (similar to the multimodel-mean $$\hbox {CO}_{2}$$CO2 EffCS of 3.6 K from idealised experiments), but its minimum in the real world (1.6 K for an observational estimate for 1985–2011, similar to the multimodel-mean value for volcanic forcing). The real-world variations mean that historical EffCS underestimates $$\hbox {CO}_{2}$$CO2 EffCS by 30% when considering the entire historical period. The difference for recent decades implies that either unforced variability or the response to volcanic forcing causes a much stronger regional pattern of sea surface temperature change in the real world than in AOGCMs. We speculate that this could be explained by a deficiency in simulated coupled atmosphere–ocean feedbacks which reinforce the pattern (resembling the Interdecadal Pacific Oscillation in some respects) that causes the low EffCS. We conclude that energy-balance estimates of $$\hbox {CO}_{2}$$CO2 EffCS are most accurate from periods unaffected by volcanic forcing. Atmosphere GCMs provided with observed sea surface temperature for the 1920s to the 1950s, which was such a period, give a range of about 2.0–4.5 K, agreeing with idealised $$\hbox {CO}_{2}$$CO2 AOGCM experiments; the consistency is a reason for confidence in this range as an estimate of $$\hbox {CO}_{2}$$CO2 EffCS. Unless another explosive volcanic eruption occurs, the first 30 years of the present century may give a more accurate energy-balance historical estimate of this quantity.

Funder

H2020 European Research Council

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3