Is interactive air sea coupling relevant for simulating the future climate of Europe?

Author:

Gröger M.ORCID,Dieterich C.,Meier H. E. M.

Abstract

AbstractThe majority of regional climate change assessments for the Euro-CORDEX region is based on high resolution atmosphere models. These models use prescribed lower boundary conditions, such as sea surface temperatures (SST) from global ocean General Circulation Models (GCMs), that do not respond to changes simulated by the regional atmosphere model, thus lacking an important feedback to the atmosphere. However, research during the past decade indicated that the use of coupled atmosphere–ocean models can lead to significantly altered model solutions compared to standalone atmosphere models for the present day climate imposing some uncertainty on the widely used uncoupled future scenarios. We here present the first multi-model and multi scenario (RCP2.6, RCP4.5, RCP8.5) ensemble of future climate change scenarios downscaled with a coupled atmosphere—ocean model in which sea surface temperature and sea ice fields are explicitly simulated by a coupled state-of-the-art high resolution ocean model and communicated to the atmosphere at 3-hourly time steps. Our ensemble generally confirms results of previous uncoupled ensembles over land areas implying that the coupling effect is restricted mainly to the coupled area and the adjacent coastal zone. By contrast, over the North Sea and Baltic Sea small scale processes point to important coupling effects that mediate the response to climate change and that can not be simulated by uncoupled models. Our results therefore impose general uncertainty on the usage of regional climate change data from uncoupled ensembles over marine areas such as for purposes of offshore wind or mussel farming, the planing of marine protected areas, and marine recreation along the coastal zone. It further sets in question the usage of uncoupled scenario data (such as Euro-CORDEX) to force high resolution ocean models. Comparing coupled and uncoupled hindcast simulations reveals that the coupling effect over land is most pronounced during the warm season when prescribed and modelled sea surface temperatures (SST) differ strongest. In addition, a generally weaker wind regime in summer damps the heat dispersion in the atmosphere so that air temperature anomalies can extent further over land compared to winter. Future projections are discussed under consideration of land-sea warming characteristics for selected climate indices as well as mean seasonal climate change. At the end of the century a clear land-sea pattern is seen in all scenarios with stronger warming over land than over open sea areas. On average land areas warm at a rate 1.5 times faster than areas over the open ocean. Over the coupled area, i.e. the North Sea and Baltic Sea tropical nights are impacted strongest and the Baltic Sea turns out to be a hot spot in future climate. This has been unrecognized in previous studies using high resolution atmosphere models with prescribed SSTs from global models which do not represent small scale ocean processes in the Baltic Sea adequately.

Funder

mercator CMEMS

Leibniz-Institut für Ostseeforschung Warnemünde (IOW)

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3