Dynamics of the spatiotemporal morphology of Mei-yu fronts: an initial survey

Author:

Hu YangORCID,Deng Yi,Lin Yanluan,Zhou Zhimin,Cui Chunguang,Dong Xiquan

Abstract

AbstractMei-yu fronts are often accompanied with prominent diabatic heating due to the development of frontal clouds and rain bands. The direct effect and relative importance of diabatic heating on the spatiotemporal morphology of Mei-yu fronts however remain unclear. Here a new frontogenesis function is derived to isolate the effect of diabatic heating and this function is then applied to the latest high resolution reanalysis product ERA5 to conduct an initial survey of dynamic and thermodynamic processes driving the intensity and structure evolutions of three typical Mei-yu fronts. It is found that the direct effect of latent heating (moisture depletion) is always frontogenetical (frontolytical) in the pre-frontal and frontal zone throughout the lifecycle of the front with latent heating (moisture depletion) in general dominates the front intensification (dissipation). Tilting is another critical process that turns the vertical gradient of equivalent potential temperature into horizontal gradient leading to frontogenesis during the front development stage, and, after the release of convective instability ahead of the front, flattens the front surface leading to frontolysis during the front decaying stage. Therefore titling maintains consistently positive contributions to the evolution of a Mei-yu front and its importance depends highly on the convective intensity near the front. The deformation effect appears frontogenetical but carries a much smaller weight compared to diabatic heating, moisture depletion and tilting. The structure evolutions of the three Mei-yu fronts studied here exhibit two distinct patterns: “bending and breaking”, and “moving and rotating”. Both patterns are dominated by the front propagation (i.e., frontogenesis through air parcels), further highlighting the critical roles played by diabatic heating, moisture depletion and titling in determining the spatiotemporal characteristics of Mei-yu fronts. As these three processes are all closely tied to updrafts, clouds and precipitation near the fronts, improved representations of clouds and convection are needed to accurately depict their feedbacks to frontal evolutions and ultimately achieve better predictions of heavy rainfall and floods associated with Mei-yu fronts.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

U.S. National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3