Abstract
AbstractHurricane activity has been higher since 1995 than in the 1970s and 1980s. This rise in activity has been linked to a warming Atlantic. In this study, we consider variability of the volume of water warmer than 26.5 ºC, considered widely to be the temperature threshold crucial to hurricane development. We find the depth of the 26.5 ºC isotherm better correlated with seasonal hurricane counts than SST in the early part of the Atlantic hurricane season in some regions. The volume of water transformed by surface heat fluxes to temperatures above 26.5 ºC is directly calculated using the Water Mass Transformation framework. This volume is compared with the year-to-year changes in the volume of water of this temperature to see how much of the volume can be explained using this calculation. In some years, there is notable correspondence between transformed and observed volume anomalies, but anomalies in other years must be largely associated with other processes, such as the divergence of horizontal heat transport associated with the AMOC. This technique provides evidence that, in a given year, coordinated physical mechanisms are responsible for the build-up of anomalous ocean heat; not only net surface heat exchange but also the convergence of horizontal heat transport from ocean currents, to provide fuel for larger numbers of intense hurricanes.
Publisher
Springer Science and Business Media LLC
Reference46 articles.
1. Balaguru K, Leung LR, Yoon JH (2013) Oceanic control of northeast Pacific hurricane activity at interannual timescales. Environ Res Lett 8(4):044009
2. Behringer DW, Xue Y (2004) Evaluation of the global ocean data assimilation system at NCEP: The Pacific Ocean. In Proc. Eighth Symp. on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface. Seattle, Wash: AMS 84th Annual Meeting, Washington State Convention and Trade Center.
3. Bellomo K, Clement AC, Murphy LN, Polvani LM, Cane MA (2016) New observational evidence for a positive cloud feedback that amplifies the Atlantic Multidecadal Oscillation. Geophys Res Lett 43(18):9852–9859
4. Birkel SD, Mayewski PA, Maasch KA, Kurbatov AV, Lyon B (2018) Evidence for a volcanic underpinning of the Atlantic multidecadal oscillation. NPJ Clim Atmosp Sci 1(1):1–7
5. Booth BB, Dunstone NJ, Halloran PR, Andrews T, Bellouin N (2012) Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature 484(7393):228–232
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献