Climatology and physical mechanisms of the tropospheric warm cores over the Tibetan Plateau and its vicinity

Author:

Shang Ke,Liu Xiaodong,Dong BuwenORCID

Abstract

AbstractThe frequently observed tropospheric warm cores over the Tibetan Plateau (TP) are unique climate phenomena and are crucial to the Asian summer monsoon development. However, their climatological structure and formation mechanisms remain elusive and inconsistent among previous studies. In this work, two vertically separated warm cores, the upper-level warm cores (ULWCs) and lower-level warm cores (LLWCs), are identified based on the zonal temperature deviation. The LLWCs are basically confined below 450 hPa, and the ULWCs are mostly observed at 200–400 hPa. The active region of the LLWCs is generally within the TP domain and characterized by regional patches with high frequency occurrences. In contrast, the active region of the ULWCs is featured by a zonally elongated band along the southern TP. The physical mechanisms for the formations of these two distinct types of warm cores are revealed: the LLWCs are mainly generated and maintained by the surface diabatic heating, while the ULWCs are dominated by the large-scale circulation associated with the convection over the Indo-Pacific warm pool. During March–June, the ULWCs within the TP domain occur most frequently and the intensities attain their maxima. In March–April, the ULWCs are mainly determined by the TP adiabatic subsidence induced by the convection over the Indo-Pacific warm pool. In May–June, the warm advection induced by westerlies generates the downstream ULWCs and enhances the ULWCs formed in previous months. Hence it might be inappropriate in traditional view to attribute the tropospheric warm cores around the TP solely to the direct thermal effect of the elevated topography.

Funder

National Natural Science Foundation of China

the Strategic Priority Research Program of Chinese Academy of Sciences

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An unusual 2019 Indian summer monsoon. A glimpse of climate change?;Theoretical and Applied Climatology;2024-03-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3