ENSO teleconnections and atmospheric mean state in idealised simulations

Author:

Di Carlo EmanueleORCID,Ruggieri Paolo,Davini Paolo,Tibaldi Stefano,Corti Susanna

Abstract

AbstractUnderstanding the natural and forced variability of the general circulation of the atmosphere and its drivers is one of the grand challenges in climate science. In particular, it is of paramount importance to understand to what extent the systematic error of global climate models affects the processes driving such variability. This is done by performing a set of simulations (ROCK experiments) with an intermediate complexity atmospheric model (SPEEDY), in which the Rocky Mountains orography is modified (increased or decreased) to influence the structure of the North Pacific jet stream. For each of these modified-orography experiments, the climatic response to idealized sea surface temperature (SST) anomalies of varying intensity in the El Niño Southern Oscillation (ENSO) region is studied. ROCK experiments are characterized by variations in the Pacific jet stream intensity whose extension encompasses the spread of the systematic error found in state-of-the-art climate models. When forced with ENSO-like idealised anomalies, they exhibit a non-negligible sensitivity in the response pattern over the Pacific North American region, indicating that a change/bias in the model mean state can affect the model response to ENSO. It is found that the classical Rossby wave train response generated by ENSO is more meridionally oriented when the Pacific jet stream is weaker, while it exhibits a more zonal structure when the jet is stronger. Rossby wave linear theory, used here to interpret the results, suggests that a stronger jet implies a stronger waveguide, which traps Rossby waves at a lower latitude, favouring a more zonally oriented propagation of the tropically induced Rossby waves. The shape of the dynamical response to ENSO, determined by changes in the intensity of the Pacific Jet, affects in turn the ENSO impacts on surface temperature and precipitation over Central and North America. Furthermore, a comparison of the SPEEDY results with CMIP6 models behaviour suggests a wider applicability of the results to more resources-demanding, complete climate GCMs, opening up to future works focusing on the relationship between Pacific jet misrepresentation and response to external forcing in fully-fledged GCMs.

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3