Abstract
AbstractIt has long been suggested that the mid-latitude atmospheric circulation possesses what has come to be known as ‘weather regimes’, loosely categorised as regions of phase space with above-average density and/or extended persistence. Their existence and behaviour has been extensively studied in meteorology and climate science, due to their potential for drastically simplifying the complex and chaotic mid-latitude dynamics. Several well-known, simple non-linear dynamical systems have been used as toy-models of the atmosphere in order to understand and exemplify such regime behaviour. Nevertheless, no agreed-upon and clear-cut definition of a ‘regime’ exists in the literature, and unambiguously detecting their existence in the atmospheric circulation is stymied by the high dimensionality of the system. We argue here for an approach which equates the existence of regimes in a dynamical system with the existence of non-trivial topological structure of the system’s attractor. We show using persistent homology, an algorithmic tool in topological data analysis, that this approach is computationally tractable, practically informative, and identifies the relevant regime structure across a range of examples.
Funder
Natural Environment Research Council
Jesus College, University of Oxford
Publisher
Springer Science and Business Media LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献