Decadal change and inter-annual variability of net primary productivity on the Tibetan Plateau

Author:

Cuo LanORCID,Zhang Yongxin,Xu-Ri ,Zhou Bingrong

Abstract

AbstractNet primary productivity (NPP) is an important indicator of plant dynamics and the net carbon exchange between the terrestrial ecosystem and atmosphere. Both the long-term shifts in climate mean (climate change) and short-term variations around the climate mean (climate variability) have impacts on NPP but studies examining both aspects of climate variations are rare especially in the data-scarce regions such as the Tibetan Plateau (TP). Here, we used a dynamic vegetation model to investigate the impacts of the changes and variabilities in temperature, precipitation, cloud cover and CO2 on NPP on the TP. The simulated NPP was evaluated using field and Moderate-Resolution Imaging Spectroradiometer NPP and was found to be reasonable. At monthly time scale, NPP significantly correlated concurrently and at 1-month lag with temperature, precipitation and cloud cover (coefficient of determination, R2, in 0.52–0.77). Annual NPP variability was high (low) where mean annual NPP was low (high). The effects of annual precipitation, cloud cover and temperature variability on annual NPP variability were spatially heterogeneous, and temperature variability appeared to be the dominant factor (R2 of 0.74). Whereas, NPP changes were very similar to CO2 increases across the TP (spatial correlation of 0.60), indicating that long-term changes in NPP were dominated by CO2 increases. For both variability and long-term changes in NPP, temperature was the major factor of influence (highest spatial correlation of 0.67). These findings could assist in making informed mitigation policies on the impacts of climate change and variability on ecosystem and local nomadic communities.

Funder

Second Tibetan Plateau Scientific Expedition and Research Program

Strategic Priority Research Program of Chinese Academy of Sciences

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3