Midlatitude atmospheric transient eddy feedbacks influenced ENSO-associated wintertime Pacific teleconnection patterns in two PDO phases

Author:

Chu Cuijiao,Hu HaiboORCID,Yang Xiu-Qun,Yang Dejian

Abstract

AbstractThe El Nino-Southern Oscillation (ENSO)-associated wintertime atmospheric teleconnection patterns in two Pacific decadal oscillation (PDO) phases are investigated using ERA-20C reanalysis data for 1950–2010. A strengthened ENSO-associated Pacific-North American (PNA) teleconnection pattern presents in PDO positive phase, while a West Pacific (WP) pattern over Northwestern Pacific and a squeezed PNA pattern coexist when ENSO occurs in PDO negative phase. The dynamical role of atmospheric transient eddy feedbacks to the teleconnection patterns are highlighted in the present study. When ENSO occurs in PDO positive phase, the uniform strengthened westerly jet anomalies downstream of the climatological main body of jet accompany with energetic transient eddy anomalies over Northeastern Pacific. The transient eddy feedbacks largely enhance and favor the strengthened PNA pattern. When ENSO occurs in PDO negative phase, the strengthened westerly jet anomalies appear to separate into two parts, one locating north of the climatological main body of jet and the other at the downstream. The accompanied transient eddy anomalies also split into two parts. Under such conditions, the transient eddy feedbacks are limited over Northeastern Pacific and favor a weak PNA pattern. However, the transient eddy anomalies over Northwestern Pacific strengthen, and the feedbacks also strengthen and largely contribute to the WP pattern. Moreover, the transient eddy anomalies over Northwestern Pacific seem to be anchored along the anomalously poleward strengthened oceanic subarctic frontal zone (SAFZ) in PDO negative phase. The enhanced atmospheric baroclinicity anomalies, coupled with the strengthened SAFZ, energize atmospheric transient eddy anomalies, and work as the potential maintenance in shaping the WP pattern.

Funder

the National Key Program for Developing Basic Science

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3