Links of atmospheric circulation to cold days in simulations of EURO-CORDEX climate models for central Europe

Author:

Plavcová EvaORCID,Stryhal JanORCID,Lhotka OndřejORCID

Abstract

AbstractDespite ongoing climate change and warming, extreme cold events still negatively affect human society. Since cold air incursions are related to specific circulation patterns, the main aims of this study are (1) to validate how well current EURO-CORDEX regional climate models (RCMs) reproduce these synoptic links and (2) to assess possible future changes in atmospheric circulation conducive to cold events. Using anomalies of daily minimum temperature, we define cold days (CDs) in central Europe and analyse their characteristics over the historical (1979−2020) and future (2070−2099) periods. We classify wintertime atmospheric circulation by applying a novel technique based on Sammon mapping to the state-of-the-art ERA5 reanalysis output. We discover that circulation types (CT) conducive to CDs are characterised by easterly advection and/or clear-sky anticyclonic conditions. While the RCM ensemble generally reproduces these synoptic links relatively well, we observe biases in the occurrence of CDs in individual simulations. These biases can be attributed to inadequately reproduced frequencies of CTs conducive to CDs (primarily propagating from driving data), as well as to deviations in the conduciveness within these CTs (primarily originating in the RCMs). Interestingly, two competing trends are identified for the end of the twenty-first century: (1) most RCMs project an increased frequency of CTs conducive to CDs, suggesting more frequent CDs, while (2) the same CTs are projected to warm faster compared to their counterparts, suggesting weaker CDs. The interplay between these opposing trends contributes to the overall uncertainty surrounding the recurrence and severity of future winter extremes in central Europe.

Funder

Grantová Agentura České Republiky

Institute of Atmospheric Physics of the Czech Academy of Sciences

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3