Evaluation of snow cover and snow water equivalent in the continental Arctic in CMIP5 models

Author:

Santolaria-Otín MaríaORCID,Zolina Olga

Abstract

AbstractSpatial and temporal patterns of snow cover extent (SCE) and snow water equivalent (SWE) over the terrestrial Arctic are analyzed based on multiple observational datasets and an ensemble of CMIP5 models during 1979–2005. For evaluation of historical simulations of the Coupled Model Intercomparison Project (CMIP5) ensemble, we used two reanalysis products, one satellite-observed product and an ensemble of different datasets. The CMIP5 models tend to significantly underestimate the observed SCE in spring but are in better agreement with observations in autumn; overall, the observed annual SCE cycle is well captured by the CMIP5 ensemble. In contrast, for SWE, the annual cycle is significantly biased, especially over North America, where some models retain snow even in summer, in disagreement with observations. The snow margin position (SMP) in the CMIP5 historical simulations is in better agreement with observations in spring than in autumn, when close agreement across the CMIP5 models is only found in central Siberia. Historical experiments from most CMIP5 models show negative pan-Arctic trends in SCE and SWE. These trends are, however, considerably weaker (and less statistically significant) than those reported from observations. Most CMIP5 models can more accurately capture the trend pattern of SCE than that of SWE, which shows quantitative and qualitative differences with the observed trends over Eurasia. Our results demonstrate the importance of using multiple data sources for the evaluation of snow characteristics in climate models. Further developments should focus on the improvement of both dataset quality and snow representation in climate models, especially ESM-SnowMIP.

Funder

Agence Nationale de la Recherche

Ministry of Education and Science of the Russian Federation

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3