The impact of global warming and the El Niño-Southern Oscillation on seasonal precipitation extremes in Australia

Author:

Delage François P. D.,Power Scott B.

Abstract

AbstractThe El Niño-Southern Oscillation (ENSO) drives substantial variability in precipitation and drought risk over Australia. Understanding the combined effect of anthropogenic forcing and ENSO on Australian precipitation extremes over the coming century can assist adaptation efforts. Here we use 24 CMIP5 climate models to examine externally forced changes in the frequency of “droughts”, when precipitation falls below the pre-industrial Decile 1 threshold. We focus on June to November (i.e., southern hemisphere Winter–Spring season) because precipitation during this period is important for agricultural production and recharging reservoirs in many parts of the country. The analysis in this paper is based on two 90-year simulations (1900–1989 and 2010–2099) for Historical and RCP8.5 scenarios. We show that the frequency of droughts, including droughts occurring in consecutive Winter–Spring seasons, is projected to increase in the twenty-first century under the RCP8.5 scenario in all eight Natural Resource Management (NRM) “clusters”. Approximately 60% of years are projected to be drought years in Perth, 35% in Adelaide, 30% in Melbourne, and approximately 20–25% of years in Sydney, Canberra and Brisbane. The relative frequency distributions of seasonally averaged Winter–Spring precipitation shift to lower values in all NRM clusters. However, apart from the Southern and Southwestern Flatlands, the shifts are accompanied by changes in the shape of the distributions whereby the high end of the distributions do not shift as much as other parts of the distribution and the wettest seasons become marginally wetter. This means that in most locations generally drier conditions are projected to be infrequently punctuated by seasons that are just as wet or wetter than the wettest years experienced during the twentieth century. While the models generally do a poor job in simulating ENSO precipitation teleconnections over Australia, an increase in ENSO-driven variability is suggested for the Wet Tropics, the Monsoonal North, the Central Slopes and the Southern and Southwestern Flatlands.

Funder

National Environmental Science Programme

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3