Asian water tower evinced in total column water vapor: a comparison among multiple satellite and reanalysis data sets

Author:

Zhao Yin,Zhou TianjunORCID

Abstract

Abstract The total column water vapor (TCWV) over the Tibetan Plateau (TP) is one important indicator of the Asian water tower, and the changes in the TCWV are vital to the climate and ecosystem in downstream regions. However, the observational data is insufficient to understand the changes in the TCWV due to the high elevation of the TP. Satellite and reanalysis data can be used as substitutes, but their quality needs to be evaluated. In this study, based on a homogenized radiosonde data set, a comprehensive evaluation of the TCWV over the TP derived from two satellite data sets (AIRS-only and AIRS/AMSU) and seven existing reanalysis data sets (MERRA, MERRA2, NCEP1, NCEP2, CFSR, ERA-I, JRA55) is performed in the context of the climatology, annual cycle and interannual variability. Both satellite data sets reasonably reproduce the characteristics of the TCWV over the TP. All reanalysis data sets perform well in reproducing the annual mean climatology of the TCWV over the TP (R = 0.99), except for NCEP1 (R = 0.96) and NCEP2 (R = 0.92). ERA-I is more reliable in capturing the spatial pattern of the annual cycle (R = 0.94), while NCEP1 shows the lowest skill (R = 0.72). JRA55 performs best in capturing the features of the interannual coherent variation (EOF1, R = 0.97). The skill-weighted ensemble mean of the reanalysis data performs better than the unweighted ensemble mean and most of the single reanalysis data sets. The evaluation provides essential information on both the strengths and weaknesses of the major satellite and reanalysis data sets in measuring the total column water vapor over the TP.

Funder

the Strategic Priority Research Program of the Chinese Academy of Sciences

National Natural Science Foundation of China

the International Partnership Program of Chinese Academy of Sciences

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3