Effects of missing gravity waves on stratospheric dynamics; part 1: climatology

Author:

Eichinger Roland,Garny Hella,Šácha Petr,Danker Jessica,Dietmüller Simone,Oberländer-Hayn Sophie

Abstract

AbstractEnergy and momentum deposition from planetary-scale Rossby waves as well as from small-scale gravity waves (GWs) largely control stratospheric dynamics. Interactions between these different wave types, however, complicate the quantification of their individual contribution to the overall dynamical state of the middle atmosphere. In state-of-the-art general circulation models (GCMs), the majority of the GW spectrum cannot be resolved and therefore has to be parameterised. This is commonly implemented in two discrete schemes, one for GWs that originate from flow over orographic obstacles and one for all other kinds of GWs (non-orographic GWs). In this study, we attempt to gain a deeper understanding of the interactions of resolved with parameterised wave driving and of their influence on the stratospheric zonal winds and on the Brewer–Dobson circulation (BDC). For this, we set up a GCM time slice experiment with two sensitivity simulations: one without orographic GWs and one without non-orographic GWs. Our findings include an acceleration of the polar vortices, which has historically been one of the main reasons for including explicit GW parameterisations in GCMs. Further, we find inter-hemispheric differences in BDC changes when omitting GWs that can be explained by wave compensation and amplification effects. These are partly evoked through local changes in the refractive properties of the atmosphere caused by the omitted GW drag and a thereby increased planetary wave propagation. However, non-local effects on the flow can act to suppress vertical wave fluxes into the stratosphere for a very strong polar vortex. Moreover, we study mean age of stratospheric air to investigate the impact of missing GWs on tracer transport. On the basis of this analysis, we suggest that the larger ratio of planetary waves to GWs leads to enhanced horizontal mixing, which can have a large impact on stratospheric tracer distributions.

Funder

Helmholtz-Gemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3