The weakening AMOC under extreme climate change
-
Published:2023-10-06
Issue:2
Volume:62
Page:1291-1309
-
ISSN:0930-7575
-
Container-title:Climate Dynamics
-
language:en
-
Short-container-title:Clim Dyn
Author:
Madan GauravORCID, Gjermundsen AdaORCID, Iversen Silje C.ORCID, LaCasce Joseph H.ORCID
Abstract
AbstractChanges in the Atlantic Meridional Overturning Circulation (AMOC) in the quadrupled CO2 experiments conducted under the sixth Coupled Model Intercomparison Project (CMIP6) are examined. Increased CO2 triggers extensive Arctic warming, causing widespread melting of sea ice. The resulting freshwater spreads southward, first from the Labrador Sea and then the Nordic Seas, and proceeds along the eastern coast of North America. The freshwater enters the subpolar gyre north of the separated Gulf Stream, the North Atlantic Current. This decreases the density gradient across the current and the current weakens in response, reducing the inflow to the deepwater production regions. The AMOC cell weakens in tandem, first near the North Atlantic Current and then spreading to higher and lower latitudes. This contrasts with the common perception that freshwater caps the convection regions, stifling deepwater production; rather, it is the inflow to the subpolar gyre that is suppressed. Changes in surface temperature have a much weaker effect, and there are no consistent changes in local or remote wind forcing among the models. Thus an increase in freshwater discharge, primarily from the Labrador Sea, is the precursor to AMOC weakening in these simulations.
Funder
Norges Forskningsråd University of Oslo
Publisher
Springer Science and Business Media LLC
Subject
Atmospheric Science
Reference126 articles.
1. Bakker P (2016) Fate of the Atlantic meridional overturning circulation: strong decline under continued warming and Greenland melting. Geophys Res Lett 43:12–25212260. https://doi.org/10.1002/2016GL070457 2. Bi D, Dix M, Marsland S, O’Farrell S, Sullivan A, Bodman R, Law R, Harman I, Srbinovsky J, Rashid HA, Dobrohotoff P, Mackallah C, Yan H, Hirst A, Savita A, Dias FB, Woodhouse M, Fiedler R, Heerdegen A (2020) Configuration and spin-up of ACCESS-CM2, the new generation Australian community climate and earth system simulator coupled model. J South Hemisphere Earth Syst Sci 70(1):225. https://doi.org/10.1071/es19040 3. Bonan D, Thompson A, Newsom E, Sun S, Rugenstein M (2022) Transient and equilibrium responses of the Atlantic overturning circulation to warming in coupled climate models: the role of temperature and salinity. J Clim 35(15):5173–5193. https://doi.org/10.1175/JCLI-D-21-0912.1 4. Boucher O, Servonnat J, Albright AL, Aumont O, Balkanski Y, Bastrikov V, Bekki S, Bonnet R, Bony S, Bopp L, Braconnot P, Brockmann P, Cadule P, Caubel A, Cheruy F, Codron F, Cozic A, Cugnet D, D’Andrea F, Davini P, de Lavergne C, Denvil S, Deshayes J, Devilliers M, Ducharne A, Dufresne J-L, Dupont E, Éthé C, Fairhead L, Falletti L, Flavoni S, Foujols M-A, Gardoll S, Gastineau G, Ghattas J, Grandpeix J-Y, Guenet B, Lionel EG, Guilyardi E, Guimberteau M, Hauglustaine D, Hourdin F, Idelkadi A, Joussaume S, Kageyama M, Khodri M, Krinner G, Lebas N, Levavasseur G, Lévy C, Li L, Lott F, Lurton T, Luyssaert S, Madec G, Madeleine J-B, Maignan F, Marchand M, Marti O, Mellul L, Meurdesoif Y, Mignot J, Musat I, Ottlé C, Peylin P, Planton Y, Polcher J, Rio C, Rochetin N, Rousset C, Sepulchre P, Sima A, Swingedouw D, Thiéblemont R, Traore AK, Vancoppenolle M, Vial J, Vialard J, Viovy N, Vuichard N (2020) Presentation and evaluation of the IPSL-CM6a-LR climate model. J Adv Model Earth Syst. https://doi.org/10.1029/2019ms002010 5. Bower A, Lozier S, Biastoch A, Drouin K, Foukal N, Furey H, Lankhorst M, Rühs S, Zou S (2019) Lagrangian views of the pathways of the Atlantic meridional overturning circulation. J Geophys Res Oceans 124(8):5313–5335. https://doi.org/10.1029/2019JC015014
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|