ENSO phase space dynamics with an improved estimate of the thermocline depth

Author:

Dommenget Dietmar,Priya Priyamvada,Vijayeta Asha

Abstract

AbstractThe recharge oscillator model of the El Niño Southern Oscillation (ENSO) describes the ENSO dynamics as an interaction between the eastern tropical Pacific sea surface temperatures (T) and subsurface heat content (thermocline depth; h), defining a dynamical cycle with different phases. h is often approximated on the basis of the depth of the 20 °C isotherm (Z20). In this study we will address how the estimation of h affects the representation of ENSO dynamics. We will compare the ENSO phase space with h estimated based on Z20 and based on the maximum gradient in the temperature profile (Zmxg). The results illustrate that the ENSO phase space is much closer to the idealised recharge oscillator model if based on Zmxg than if based on Z20. Using linear and non-linear recharge oscillator models fitted to the observed data illustrates that the Z20 estimate leads to artificial phase dependent structures in the ENSO phase space, which result from an in-phase correlation between h and T. Based on the Zmxg estimate the ENSO phase space diagram show very clear non-linear aspects in growth rates and phase speeds. Based on this estimate we can describe the ENSO cycle dynamics as a non-linear cycle that grows during the recharge and El Nino state, and decays during the La Nina states. The most extreme ENSO states are during the El Nino and discharge states, while the La Nina and recharge states do not have extreme states. It further has faster phase speeds after the El Nino state and slower phase speeds during and after the La Nina states. The analysis suggests that the ENSO phase speed is significantly positive in all phases, suggesting that ENSO is indeed a cycle. However, the phase speeds are closest to zero during and after the La Nina state, indicating that the ENSO cycle is most likely to stall in these states.

Funder

Australian Research Council

Monash University

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3