Abstract
AbstractThis study presents a novel, high-resolution, dynamically downscaled dataset that will help inform regional and local stakeholders regarding potential impacts of climate change at the scales necessary to examine extreme mesoscale conditions. WRF-ARW version 4.1.2 was used in a convection-permitting configuration (horizontal grid spacing of 3.75 km; 51 vertical levels; data output interval of 15-min) as a regional climate model for a domain covering the contiguous US Initial and lateral boundary forcing for the regional climate model originates from a global climate model simulation by NCAR (Community Earth System Model) that participated in phase 5 of the Coupled Model Inter comparison Project. Herein, we use a version of these data that are regridded and bias corrected. Two 15-year downscaled simulation epochs were examined comprising of historical (HIST; 1990–2005) and potential future (FUTR; 2085–2100) climate using Representative Concentration Pathway (RCP) 8.5. HIST verification against independent observational data revealed that annual/seasonal/monthly temperature and precipitation (and their extremes) are replicated admirably in the downscaled HIST epoch, with the largest biases in temperature noted with daily maximum temperatures (too cold) and the largest biases in precipitation (too dry) across the southeast US during the boreal warm season. The simulations herein are improved compared to previous work, which is significant considering the differences in previous modeling approaches. Future projections of temperature under the RCP 8.5 scenario are consistent with previous works using various methods. Future precipitation projections suggest statistically significant decreases of precipitation across large segments of the southern Great Plains and Intermountain West, whereas significant increases were noted in the Tennessee/Ohio Valleys and across portions of the Pacific Northwest. Overall, these simulations serve as an additional datapoint/method to detect potential future changes in extreme meso-γ weather phenomena.
Funder
National Science Foundation
Publisher
Springer Science and Business Media LLC
Reference78 articles.
1. Adams DK, Comrie AC (1997) The north American monsoon. Bull Am Meteor Soc 78:2197–2214
2. Almazroui M et al (2021) Projected changes in temperature and precipitation over the United States, Central America, and the Caribbean in CMIP6 GCMs. Earth Syst Environ 5:1–24
3. Ashley WS, Haberlie AM, Gensini VA (2020) Reduced frequency and size of late-twenty-first-century snowstorms over North America. Nat Clim Chang 10:539–544
4. Bruyère CL, Done JM, Holland GJ, Fredrick S (2014) Bias corrections of global models for regional climate simulations of high-impact weather. Clim Dyn 43:1847–1856
5. Burgess MG, Ritchie J, Shapland J, Pielke R (2020) IPCC baseline scenarios have over-projected CO2 emissions and economic growth. Environ Res Lett 16:014016
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献