Hydrological cycle of the Mediterranean-Black Sea system

Author:

García-García David,Vigo M. IsabelORCID,Trottini Mario,Vargas-Alemañy Juan A.,Sayol Juan-Manuel

Abstract

AbstractThe Mediterranean-Black Sea system consists of two semi-enclosed basins connected by the Turkish Straits. In turn, the Mediterranean Sea is connected to the Atlantic Ocean through the narrow Strait of Gibraltar. The hydrological cycle of the system is driven by fresh water exchanges between the atmosphere, continents and oceans, and by salty water mass exchange among the ocean basins. Monitoring such water fluxes, especially its time evolution, is essential to understand the water cycle in the region, which is very sensitive to global climate changes and influences the variability of the Atlantic Meridional Overturning Circulation (AMOC), which in turn affects the global climate. In this study, we have estimated the hydrological cycle of the Mediterranean-Black Sea system from the time-variable gravity observations performed by the Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-On satellites, and precipitation and evaporation from ERA5 atmospheric reanalysis data for the period 2002–2020. In the Black Sea, rivers introduce an average water volume of 391 ± 12 km3/year, one third of which escape through the atmosphere and two thirds go to the Mediterranean Sea. In the latter, 1787 ± 23 km3/year are lost via net evaporation. The rivers runoff (502 ± 27 km3/year), and the inflow of Atlantic waters (1020 ± 56 km3/year; 0.0323 ± 0.0018 Sv), finally restore the Mediterranean water budget. The balance is not reached instantaneously, and this delay introduces a seasonal variability in all the fluxes. In particular, the net water flux from the Atlantic Ocean increases up to 2660 ± 111 km3/year in August/September, and reverses to − 407 ± 140 km3/year in April/May. On top of the climatology, the mean annual Atlantic water flux varies significantly between 706 and 1262 km3/year.

Funder

ministerio de ciencia, innovación y universidades

european social fund

Generalitat Valenciana

Universidad de Alicante

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3