The warm Arctic-cold north american pattern in CanESM5 large ensemble simulations: Eurasian influence and uncertainty due to internal variability

Author:

Yu BinORCID,Lin Hai

Abstract

AbstractThis study examines the warm Arctic-cold North American pattern (WACNA) and its connection with the warm Arctic-cold Eurasia pattern (WACE) using ERA5 reanalysis and a 50-member ensemble of historical climate simulations produced by CanESM5, the Canadian model participated in CMIP6. The results indicate that a negative WACE-like pattern typically precedes a positive WACNA pattern by one month, and the presence of a negative Asian-Bering-North American (ABNA)-like circulation pattern connects Eurasia and North America, along with the Pacific-North American (PNA)-like pattern. The negative ABNA-like pattern can be attributed to anomalous heating in southern Siberia, which is associated with the negative WACE pattern and its featured Eurasian warming. The negative PNA-like pattern is influenced by negative SST anomalies in the tropical Pacific, resembling tropical ENSO variability. Anomalous temperature advection in the lower troposphere follows the circulation anomaly, which supports the formation of WACNA. Conversely, processes with circulation anomalies of opposite sign result in a negative WACNA pattern. The tropical ENSO variability does not significantly impact the WACNA pattern and its linkage with WACE. CanESM5 simulates the WACNA pattern and WACE-WACNA connection well, with some discrepancies in the magnitude of anomalies compared to ERA5 reanalysis. The uncertainty in the simulated WACNA pattern due to internal climate variability is dominated by two modes of inter-member variability: a southeast-northwest phase shift and a local variation in amplitude.

Funder

Environment & Climate Change Canada

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3