Scope for predicting seasonal variation of the SPCZ with ACCESS-S1

Author:

Beischer Thomas A.ORCID,Gregory Paul,Dayal Kavina,Brown Josephine R.,Charles Andrew N.,Wang William X. D.,Brown Jaclyn N.

Abstract

AbstractRegional seasonal forecasting requires accurate simulation of the variability of local climate drivers. The South Pacific Convergence Zone (SPCZ) is a large region of low-level convergence, clouds and precipitation in the South Pacific, whose effects extend as far as northeast Australia (NEA). The location of the SPCZ is modulated by the El Niño-Southern Oscillation (ENSO) which causes rainfall variability in the region. Correctly simulating the ENSO-SPCZ teleconnection and its interplay with local conditions is essential for improving seasonal rainfall forecasts. Here we analyse the ability of the ACCESS-S1 seasonal forecast system to predict the SPCZ’s relationship with ENSO including its latitudinal shifts, zonal slope and rainfall magnitude between 1990 and 2012 for the December–January–February (DJF) season. We found improvements in ACCESS-S1’s SPCZ prediction capability compared to its predecessor (POAMA), although prediction of the slope is still limited. The inability of ACCESS-S1 to replicate seasons with a strong anti-zonal SPCZ slope is attributed to its atmospheric model. This has implications for accurate seasonal rainfall forecasts for NEA and South Pacific Islands. Future challenges in seasonal prediction facing regional communities and developers of coupled ocean–atmosphere forecast models are discussed.

Funder

Climate and Oceans Support Program in the Pacific

Department of Foreign Affairs and Trade, Australian Government

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

Reference102 articles.

1. Adler RF, Huffman GJ, Chang A, Ferraro R, Xie PP, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P, Nelkin E (2003) The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J Hydrometeorol 4:1147–1167

2. Australian Bureau of Meteorology and CSIRO (2011) Climate change in the Pacific: Scientific Assessment and New Research. Volume 1: Regional Overview. Volume 2: Country Reports. Hennessy, K., Power, S., Cambers, G. (Scientific Editors)

3. Barnett J (2011) Dangerous climate change in the Pacific Islands: food production and food security. Reg Environ Change 11(1):229–237. https://doi.org/10.1007/s10113-010-0160-2

4. Best MJ, Pryor M, Clark DB, Rooney GG, Essery RLH, Ménard CB, Edwards JM, Hendry MA, Porson A, Gedney N, Mercado LM, Sitch S, Blyth E, Boucher O, Cox PM, Grimmond CSB, Harding RJ (2011) The joint UK land environment simulator (JULES), model description—part 1: energy and water fluxes. Geosci Model Dev 4(3):677–699. https://doi.org/10.5194/gmd-4-677-2011

5. Bi D, Dix M, Marsland SJ, O’Farrell S, Rashid H, Uotila P, Hirst AC, Kowalczyk EA, Golebiewski M, Sullivan A, Yan H, Hannah N, Franklin CN, Sun Z, Vohralik PF, Watterson IG, Zhou X, Fiedler R, Collier M, Ma Y, Noonan JA, Stevens L, Uhe P, Zhu H, Griffies SM, Hill R, Harris C, Puri K (2013) The ACCESS coupled model: description, control climate and evaluation. Aust Meteorol Oceanogr J 63:41–64. https://doi.org/10.22499/2.6301.004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3