Abstract
AbstractConsistent with the northward migration of the annual mean latitude of tropical cyclone (TC) lifetime maximum intensity (LMI), the basin-wide mean location of TC formation shifted northward in the western North Pacific (WNP) basin over the past four decades. Whether such a shift was related to the anthropogenic influence is important to understanding the response of TC activity to climate change. Instead of detecting the effects of individual environmental factors on this shift, here we focus on the interdecadal variability of the monsoon trough (MT), within which most TCs in the WNP basin occur, and its roles in the shift of the basin-wide mean location of TC formation using 60-year reanalysis data. Interdecadal variations of the MT exhibit two main modes: one associated with the Pacific decadal oscillation (PDO) and the other associated with the interdecadal Pacific oscillation (IPO). In addition, the north–south shift of the mean latitude of TC formation is accompanied by east–west extension of the tropical upper tropospheric trough (TUTT) and the tropical eastern Pacific cold tongue indicated by the east–west contrast of sea surface temperature (SST) anomalies. The poleward shift of the mean TC formation latitude is closely associated with the IPO mode of the MT. The westward retreat of the northwest-to-southeast-oriented MT and the accompanied westward extension of the TUTT reduced TC formation in the eastern part of the WNP basin when the cold tongue shifted westward. It is indicated that the observed poleward shift of TC formation was mainly attributed to natural variability in recent decades.
Funder
National Natural Science Foundation of China
Open Research Program of the State Key Laboratory of Severe Weather
China Scholarship Council
Postgraduate Research & Practice Innovation Program of Jiangsu Province
Publisher
Springer Science and Business Media LLC
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献