Abstract
AbstractSelecting climate model projections is a common practice for regional and local studies. This process often relies on local rather than synoptic variables. Even when synoptic weather types are considered, these are not related to the variable or climate impact driver of interest. Therefore, most selection procedures may not sufficiently account for atmospheric dynamics and climate change impact uncertainties. This study outlines a selection methodology that addresses both these shortcomings. Our methodology first optimizes the Lamb Weather Type classification for the variable and region of interest. In the next step, the representation of the historical synoptic dynamics in Global Climate Models (GCMs) is evaluated and accordingly, low-performing models are excluded. In the last step, indices are introduced that quantify the climate change signals related to the impact of interest. Using these indices, a scoring method results in assessing the suitability of GCMs. To illustrate the applicability of the methodology, a case study of extreme heat in Belgium was carried out. This framework offers a comprehensive method for selecting relevant climate projections, applicable in model ensemble-based research for various climate variables and impact drivers.
Funder
BELSPO
HORIZON EUROPE Research and Innovation Actions
Publisher
Springer Science and Business Media LLC