On the relation of CMIP6 GCMs errors at RCM driving boundary condition zones and inner region for Central Europe region

Author:

Holtanová EvaORCID,Belda Michal,Crespo Natália Machado,Halenka Tomáš

Abstract

AbstractGlobal climate models (GCMs) are essential for studying the climate system and climate change projections. Due to their coarse spatial resolution, downscaling is necessary on the regional scale. Regional climate models (RCMs) represent a standard solution for this issue. Nevertheless, the boundary conditions provided by GCMs unavoidably influence the outputs of RCMs. This study evaluates CMIP6 GCMs regarding the variables relevant to RCM boundary conditions. Particular focus is on the simulation of CNRM-ESM2-1, which is being used as a driving model for convection-permitting ALARO-Climate RCM, used as one source feeding new Czech climate change scenarios. The analysis is conducted over the boundaries and inside the RCM integration domain. Firstly, an evaluation of CFSR and ERA5 reanalyses against radiosondes is performed to choose an appropriate reference dataset for upper air variables. A high correlation between the two studied reanalysis and radiosondes was revealed, and it slightly decreases at the upper tropospheric levels. ERA5 is then chosen as the reference for the boundary analysis. Over the inner region, the simulated mean annual cycle of impact-relevant variables is validated against E-OBS. The CNRM-ESM2-1 performs well regarding near-surface variables over the Czech Republic, but it exhibits larger errors along the boundaries, especially for air temperature and specific humidity. The GCM performance in simulating the upper air atmospheric variables used as RCM boundary conditions relates rather weakly to the GCM performance in simulating the near-surface parameters in the inner region in terms of parameters relevant for impact studies.

Funder

Technologická Agentura České Republiky

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3