Abstract
AbstractThe driver mechanisms of Dansgaard-Oeschger (DO) events remain uncertain, in part because many climate models do not show similar oscillatory behaviour. Here we present results from glacial simulations of the HadCM3B coupled atmosphere–ocean-vegetation model that show stochastic, quasi-periodical variability on a similar scale to the DO events. This variability is driven by variations in the strength of the Atlantic Meridional Overturning Circulation in response to North Atlantic salinity fluctuations. The mechanism represents a salt oscillator driven by the salinity gradient between the tropics and the Northern North Atlantic. Utilising a full set of model salinity diagnostics, we identify a complex ocean–atmosphere-sea-ice feedback mechanism that maintains this oscillator, driven by the interplay between surface freshwater fluxes (tropical P-E balance and sea-ice), advection, and convection. The key trigger is the extent of the Laurentide ice sheet, which alters atmospheric and ocean circulation patterns, highlighting the sensitivity of the climate system to land-ice extent. This, in addition to the background climate state, pushes the climate beyond a tipping point and into an oscillatory mode on a timescale comparable to the DO events.
Funder
natural environment research council
horizon 2020
University of Helsinki including Helsinki University Central Hospital
Publisher
Springer Science and Business Media LLC
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献