Role of the intraseasonal IPCO in the absence of typhoons in July 2020

Author:

Li Fei,Li Jianping,Wang Hao,Diao Yina

Abstract

AbstractThe influence of the intraseasonal Indo-western Pacific convection oscillation (IPCO) on the absence of typhoons in July 2020 over the western North Pacific (WNP) was explored. While observation analysis shows that necessary conditions such as sea surface temperature (SST) and vertical wind shear in July 2020 meet the basic requirement of or even are conducive to the formation of typhoon, the unprecedented absence of typhoon over the WNP occurred in July 2020, and it is the first time that no typhoon in July since 1951. Additionally, significant differences were found in the number of typhoons in July between the different phases of the intraseasonal IPCO, and the number in the positive phase of the intraseasonal IPCO was significantly higher than that in the negative phase of the intraseasonal IPCO. In July 2020, the intraseasonal IPCO was in a strong negative phase, with the third lowest index in history and had the strongest inhibition effect on convection over the WNP on record, leading to large-scale circulation anomalies. The strongest descending movement on record inhibited the upward transport of water vapor and the development of cumulus convection, thereby reducing the release of latent heat of condensation and making it difficult to form a typhoon warm-core structure. In addition, the geopotential height increased over the WNP, and the western Pacific subtropical high moved southerly, which inhibited typhoon formation. Simultaneously, the South China Sea monsoon trough weakened significantly, with increased negative vorticity anomaly in the response scale, which hindered disturbance generation. The lowest genesis potential index confirmed that the large-scale circulation anomaly caused by the intraseasonal IPCO had an unprecedented restraining effect on typhoon generation, leading to the absence of typhoons over the WNP in July 2020.

Funder

National Natural Science Foundation of China

Shandong Natural Science Foundation Project

Fundamental Research Funds for the Central Universities

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3