Understanding changes in heat waves, droughts, and compound events in Yangtze River Valley and the corresponding atmospheric circulation patterns

Author:

Qian Zhonghua,Sun Yingxiao,Ma QianrongORCID,Gu Yu,Feng Taichen,Feng Guolin

Abstract

AbstractHeat waves, droughts, and compound drought and heat waves (CDHWs) have received extensive attention because of their disastrous impacts on agriculture, ecosystems, human health, and society. Here, we computed the heat wave magnitude index (HWMI), drought magnitude index (DMI), and compound drought and heat wave magnitude index (CDHMI) for Yangtze River Valley (YRV) from July to August during 1961–2022. We compared the large-scale atmospheric circulation characteristics of different extreme events based on these indexes. The results show that the positive center with sink motion in East Asia provides a favorable circulation background for heat wave events. Drought events are mainly affected by the zonal wave train dominated by a significant negative anomaly in Siberia and a high-pressure anomaly upstream, and a anticyclonic water vapor with strong divergence over the Yangtze River basin. During CDHW events, both anomalous systems that affect heat waves and droughts appear and strengthen simultaneously. Specifically, in the middle and upper troposphere, the positive height anomaly center in YRV expands abnormally, and the “+–+” wave train over the northern 50° N region of East Asia becomes more obvious. Therefore, the positive anomaly and water vapor anomaly brought by the two circulation patterns at different latitudes are superimposed over the YRV, leading to severe CDHWs. At the same time, the warm positive eddy center and cold negative eddy center in high latitudes exhibit more stable positive pressure features, which are conducive to the persistent development and strengthening of CDHWs. In addition, the anomalous warm sea surface temperature in western Pacific moderating the favorable circulation patterns may also promote the occurrence of CDHWs in the YRV during the same period.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3