ENSO teleconnections in terms of non-NAO and NAO atmospheric variability

Author:

King Martin P.ORCID,Keenlyside Noel,Li Camille

Abstract

AbstractThe validity of the long-held understanding or assumption that El Niño-Southern Oscillation (ENSO) has a remote influence on the North Atlantic Oscillation (NAO) in the January–February–March (JFM) months has been questioned recently. We examine this claim further using atmospheric data filtered to separate the variability orthogonal and parallel to NAO. This decomposition of the atmospheric fields is based on the Principal Component/Empirical Orthogonal Function method whereby the leading mode of the sea-level pressure in the North Atlantic sector is recognised as the NAO, while the remaining variability is orthogonal (unrelated) to NAO. Composite analyses indicate that ENSO has statistically significant links with both the non-NAO and NAO variability at various atmospheric levels. Additional bootstrap tests carried out to quantify the uncertainty and statistical significance confirm these relationships. Consistent with previous studies, we find that an ENSO teleconnection in the NAO-related variability is characterised by lower-stratospheric eddy heat flux anomalies (related to the vertical propagation of planetary waves) which appear in November–December and strengthen through JFM. Under El Niño (La Niña), there is constructive (destructive) interference of anomalous eddy heat flux with the climatological pattern, enhancing (reducing) fluxes over the northern Pacific and Barents Sea areas. We further show that the teleconnection of extreme El Niño is essentially a non-NAO phenomenon. Some non-linearity of the teleconnections is suggested, with El Niño including more NAO-related variability than La Niña, but the statistical significance is degraded due to weaker signals and smaller sample sizes after the partitioning. Our findings have implications for the general understanding of the nature of ENSO teleconnections over the North Atlantic, as well as for refining methods to characterise and evaluate them in models.

Funder

Trond Mohn stiftelse

EC Horizon2020

NordForsk

Research Council of Norway

Ministry of Science and Higher Education, Russia

University of Bergen

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3