Low-frequency variability of the Pacific Subtropical Cells as reproduced by coupled models and ocean reanalyses
-
Published:2021-01-26
Issue:9-10
Volume:56
Page:3231-3254
-
ISSN:0930-7575
-
Container-title:Climate Dynamics
-
language:en
-
Short-container-title:Clim Dyn
Author:
Graffino GiorgioORCID, Farneti Riccardo, Kucharski Fred
Abstract
AbstractLow-frequency variability of the Pacific Subtropical Cells (STCs) is investigated using outputs from several models included in the two latest phases of Coupled Model Intercomparison Project (CMIP), CMIP5 and CMIP6, as well as ocean reanalysis products. Our analysis focuses on historical simulations and an idealised future scenario integration. Mass and heat transport diagnostics are employed to assess how coupled models and ocean reanalyses reproduce Pacific STCs total and interior transport convergence at the equator and their relationship with equatorial Pacific sea surface temperature (SST). Trends of mass and heat transport are also evaluated, in order to study how the STCs are expected to change in a warming climate. A large spread is obtained across models in simulated mass transports, confirming that coupled models do not agree on reproducing observed Pacific STCs dynamics, with very limited improvement by CMIP6 models. Compared to ocean reanalysis products, coupled models tend to underestimate the STCs interior transport convergence, and are less efficient on propagating the signal generated by the subtropical wind stress towards the equator. Also, mass transport obtained from ocean reanalyses exhibit larger variability, and these products also better reproduce the STCs-SST relationship. Future scenario simulations suggest a weakening (strengthening) of the heat transport by the North (South) Pacific cell under warmer conditions, with a general agreement across models. Equatorward mass transport trends do not confirm this for total and interior components, but they do for the western boundary component.
Publisher
Springer Science and Business Media LLC
Subject
Atmospheric Science
Reference95 articles.
1. Arora V, Scinocca J, Boer G, Christian J, Denman K, Flato G, Kharin V, Lee W, Merryfield WJ (2011) Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys Res Lett 38:L05805. https://doi.org/10.1029/2010GL046270 2. Balmaseda M, Mogensen K, Weaver A (2013) Evaluation of the ECMWF ocean reanalysis system ORAS4. QJR Meteorol Soc 139:1132–1161. https://doi.org/10.1002/qj.2063 3. Balmaseda MFH, Storto A, Palmer M, Alves O, Shi L, Smith G, Toyoda T, Valdivieso M, Barnier B, Behringer D, Boyer T, Chang YS, Chepurin G, Ferry N, Forget G, Fujii Y, Good S, Guinehut S, Haines K, Ishikawa Y, Keeley S, Köhl A, Lee T, Martin M, Masina S, Masuda S, Meyssignac B, Mogensen K, Parent L, Peterson K, Tang Y, Yin Y, Vernieres G, Wang X, Waters J, Wedd R, Wang O, Xue Y, Chevallier M, Lemieux JF, Dupont F, Kuragano T, Kamachi M, Awaji T, Caltabiano A, Wilmer-Becker K, Gaillard F (2015) The ocean reanalyses intercomparison project (ORA-IP). J Oper Oceanogr 8(sup1):s80–s97. https://doi.org/10.1080/1755876X.2015.1022329 4. Bi D, Dix M, Marsland S, O’Farrell S, Sullivan A, Bodman R, Law R, Harman I, Srbinovsky J, Rashid H, Dobrohotoff P, Mackallah C, Yan H, Hirst A, Savita A, Dias F, Woodhouse M, Fiedler R, Heerdegen A (2020) Configuration and spin-up of ACCESS-CM2, the new generation Australian Community Climate and Earth System Simulator Coupled Model. J South Hemisphere Earth Syst Sci 70:225–251. https://doi.org/10.1071/ES19040 5. Bi D, Dix M, Marsland S, O’Farrell S, Rashid H, Uotila P, Hirst A, Kowalczyk E, Golebiewski M, Sullivan A, Yan H, Hannah N, Franklin C, Sun Z, Vohralik P, Watterson I, Zhou X, Fiedler R, Collier M, Ma Y, Noonan J, Stevens L, Uhe P, Zhu H, Griffies S, Hill R, Harris C, Puri K (2013) The ACCESS coupled model: description, control climate and evaluation. Aust Meteorol Oceanogr J 63:41–64. http://www.bom.gov.au/jshess/docs/2013/bi1_hres.pdf
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|