Drivers of low-frequency Sahel precipitation variability: comparing CMIP5 and CMIP6 ensemble means with observations

Author:

Herman Rebecca JeanORCID,Biasutti MichelaORCID,Kushnir YochananORCID

Abstract

AbstractPhases 5 and 6 of the Coupled Model Intercomparison Project (CMIP5 and CMIP6) both grossly underestimate the magnitude of low-frequency Sahel rainfall variability; but unlike CMIP5, CMIP6 mean historical precipitation does not even correlate with observed multi-decadal variability. We demarcate realms of simulated physical processes that may induce differences between these ensembles and prevent both from explaining observations. We partition all influences on simulated Sahelian precipitation variability into (1) teleconnections from sea surface temperature (SST); (2) atmospheric and (3) oceanic variability internal to the climate system; (4) the SST response to external radiative forcing; and (5) the “fast” (not mediated by SST) precipitation response to radiative forcing. In a vast improvement from previous ensembles, the mean spectral power of Sahel rainfall in CMIP6 atmosphere-only simulations is consistent with observed low-frequency variance. Low-frequency variability is dominated by teleconnections from observed global SST, and the fast response only hurts the performance of simulated precipitation. We estimate that the strength of simulated teleconnections is consistent with observations using the previously-established North Atlantic Relative Index (NARI) to approximate the role of global SST, and apply this relationship to the coupled ensembles to infer that both fail to explain low-frequency historical Sahel rainfall variability mostly because they cannot explain the observed combination of forced and internal variability in North Atlantic SST. Yet differences between CMIP5 and CMIP6 in mean Sahel precipitation and its correlation with observations do not derive from differences in NARI, but from the fast response or the role of other SST patterns.

Funder

U.S. National Science Foundation

Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR)

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3