Convection-permitting climate simulations for South America with the Met Office Unified Model

Author:

Halladay KateORCID,Kahana Ron,Johnson Ben,Still Christopher,Fosser Giorgia,Alves Lincoln

Abstract

AbstractWe present the first convection-permitting regional climate model (CPRCM) simulations at 4.5 km horizontal resolution for South America at near-continental scale, including full details of the experimental setup and results from the reanalysis-driven hindcast and climate model-driven present-day simulations. We use a range of satellite and ground-based observations to evaluate the CPRCM simulations covering the period 1998–2007 comparing the CPRCM output with lower resolution regional and global climate model configurations for key regions of Brazil. We find that using the convection-permitting model at high resolution leads to large improvements in the representation of precipitation, specifically in simulating its diurnal cycle, frequency, and sub-daily intensity distribution (i.e. the proportion of heavy and light precipitation). We tentatively conclude that there are also improvements in the spatial structure of precipitation. We see higher precipitation intensity and extremes over Amazonia in the CPRCMs compared with observations, though more sub-daily observational data from meteorological stations are required to conclusively determine whether the CPRCMs add value in this regard. For annual mean precipitation and mean, maximum and minimum near surface temperatures, it is not clear that the CPRCMs add value compared with coarser-resolution models with parameterised convection. We also find large changes in the contribution to evapotranspiration from canopy evaporation compared to soil evaporation and transpiration compared with the RCM. This is likely to be related to the shift in precipitation intensity distribution of the CPRCMs compared to the RCM and its impact on the hydrological requires further investigation.

Funder

Newton Fund

Met Office Hadley Centre Climate Programme

Fundação de Amparo à Pesquisa do Estado de São Paulo

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3