Moisture sources for precipitation variability over the Arabian Peninsula

Author:

Horan Matthew F.,Batibeniz Fulden,Kucharski Fred,Almazroui Mansour,Abid Muhammad Adnan,Fu Joshua S.,Ashfaq Moetasim

Abstract

AbstractWe apply the Lagrangian-based moisture back trajectory method to two reanalysis datasets to determine the moisture sources for wet season precipitation over the Arabian Peninsula, defined as land on the Asian continent to the south of the Turkish border and west of Iran. To accomplish this, we make use of the evaporative source region between 65°W–120°E and 30°S–60°N, which is divided into twelve sub-regions. Our comparison of reanalyses and multiple observations allows us to validate datasets and highlight broad-scale similarities in characteristics, notwithstanding some inconsistencies in the southwest AP. The results indicate north-to-south spatiotemporal heterogeneity in the characteristics of dominant moisture sources. In the north, moisture for precipitation is mainly sourced from midlatitude land and water bodies, such as the Mediterranean and Caspian Seas. Areas further south are dependent on moisture transport from the Western Indian Ocean and parts of the African continent. The El Niño-Southern Oscillation (ENSO) exhibits an overall positive but sub-seasonally varying influence on the precipitation variability over the region, with noticeable moisture anomalies from all major source regions. A significant drying trend exists over parts of the Peninsula, which both reanalyses partially attribute to anomalies in the moisture advection from the Congo Basin and South Atlantic Ocean. However, considerable uncertainty in evaporation trends over the terrestrial evaporative sources in observations warrants additional modeling studies to further our understanding of key processes contributing to the negative trends.

Funder

Oak Ridge National Laboratory

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3