Influence of the freezing level on atmospheric rivers in High Mountain Asia: WRF case studies of orographic precipitation extremes

Author:

Nash DeannaORCID,Carvalho Leila M. V.,Rutz Jonathan J.,Jones Charles

Abstract

AbstractAtmospheric rivers (ARs) reach High Mountain Asia (HMA) about 10 days per month during the winter and spring, resulting in about 20 mm day$$^{-1}$$ - 1 of precipitation. However, a few events may exceed 100 mm day$$^{-1}$$ - 1 , providing most of the total winter precipitation and increasing the risk of precipitation-triggered landslides and flooding, particularly when the height of the height of the 0 $$^{\circ }$$ C isotherm, or freezing level is above-average. This study shows that from 1979 to 2015, integrated water vapor transport (IVT) during ARs that reach Western HMA has increased 16% while the freezing level has increased up to 35 m. HMA ARs that have an above-average freezing level result in 10–40% less frozen precipitation compared to ARs with a below-average freezing level. To evaluate the importance of these trends in the characteristics of ARs, we investigate mesoscale processes leading to orographic precipitation using Advanced Weather Research and Forecasting (ARW-WRF) simulations at 6.7 km spatial resolution. We contrast two above- and below- average freezing level AR events with otherwise broadly similar characteristics and show that with a 50–600 m increase in freezing level, the above-average AR resulted in 10–70% less frozen precipitation than the below-average event. This study contributes to a better understanding of climate change-related impacts within HMA’s hydrological cycle and the associated hazards to vulnerable communities living in the region.

Funder

National Science Foundation

National Aeronautics and Space Administration

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3