Evaluation of the convection-permitting regional climate model CNRM-AROME41t1 over Northwestern Europe

Author:

Lucas-Picher PhilippeORCID,Brisson E.,Caillaud C.,Alias A.,Nabat P.,Lemonsu A.,Poncet N.,Cortés Hernandez V. E.,Michau Y.,Doury A.,Monteiro D.,Somot S.

Abstract

AbstractSince a decade, convection-permitting regional climate models (CPRCM) have emerged showing promising results, especially in improving the simulation of precipitation extremes. In this article, the CPRCM CNRM-AROME developed at the Centre National de Recherches Météorologiques (CNRM) since a few years is described and evaluated using a 2.5-km 19-year long hindcast simulation over a large northwestern European domain using different observations through an added-value analysis in which a comparison with its driving 12-km RCM CNRM-ALADIN is performed. The evaluation is challenging due to the lack of high-quality observations at both high temporal and spatial resolutions. Thus, a high spatio-temporal observed gridded precipitation dataset was built from the collection of seven national datasets that helped the identification of added value in CNRM-AROME. The evaluation is based on a series of standard climatic features that include long-term means and mean annual cycles of precipitation and near-surface temperature where CNRM-AROME shows little improvements compared to CNRM-ALADIN. Additional indicators such as the summer diurnal cycle and indices of extreme precipitation show, on the contrary, a more realistic behaviour of the CNRM-AROME model. Moreover, the analysis of snow cover shows a clear added-value in the CNRM-AROME simulation, principally due to the improved description of the orography with the CPRCM high resolution. Additional analyses include the evaluation of incoming shortwave radiation, and cloud cover using satellite estimates. Overall, despite some systematic biases, the evaluation indicates that CNRM-AROME is a suitable CPRCM that is superior in many aspects to the RCM CNRM-ALADIN.

Funder

Agence Nationale de la Recherche

H2020 Societal Challenges

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3