Lagged oceanic effects on the East African short rains

Author:

Kolstad Erik W.ORCID,MacLeod DavidORCID

Abstract

AbstractThe East African ‘short rains’ in October–December (OND) exhibit large interannual variability. Drought and flooding are not unusual, and long-range rainfall forecasts can guide planning and preparedness for such events. Although seasonal forecasts based on dynamical models are making inroads, statistical models based on sea surface temperature (SST) precursors are still widely used, making it important to better understand the strengths and weaknesses of such models. Here we define a simple statistical forecast model, which is used as a tool to shed light on the dynamics that link SSTs and rainfall across time and space, as well as on why such models sometimes fail. Our model is a linear regression, where the August states of El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) predict about 40% of the short rains variability in 1950–2020. The forecast errors are traced back to the initial SSTs: too-wet (too-dry) forecasts are linked linearly to positive (negative) initial ENSO and IOD states in August. The link to the initial IOD state is mediated by changes in the IOD between August and OND, highlighting a physical mechanism for prediction busts. We also identify asymmetry and nonlinearity: when ENSO and/or the IOD are positive in August, the range and variance of OND forecast errors are larger than when the SST indices are negative. Upfront adjustments of predictions conditional on initial SSTs would have helped in some years with large forecast busts, such as the dry 1987 season during a major El Niño, for which the model erroneously predicts copious rainfall, but it would have exacerbated the forecast in the wet 2019 season, when the IOD was strongly positive and the model predicts too-dry conditions.

Funder

Norges Forskningsråd

Horizon 2020 Framework Programme

NORCE Norwegian Research Centre AS

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3