Author:
Hu Xinjia,Eichner Jan,Gong Daoyi,Barreiro Marcelo,Kantz Holger
Abstract
AbstractSoutheastern South America (SESA)’s precipitation is thought to be influenced by both El Niño Southern Oscillation (ENSO) and Antarctic Oscillation (AAO), especially in austral spring. Previous studies conclude AAO can modulate ENSO’s impact on precipitation over the SESA region without differentiating between El Niño and La Niña events. In the present study, we use composite analysis to further explore the combined impact of AAO and ENSO on austral spring precipitation over Southeastern South America (SESA) to answer this question and explain the dynamic mechanisms. We found that different AAO phases can influence La Niña’s impact on SESA austral spring precipitation considerably, while this does not apply for El Niño events. From our analysis, we found that AAO exerts more impact on austral spring precipitation over SESA compared to ENSO during La Niña years by influencing northerly wind and southward water vapor flux, which contributes most of the moisture into the SESA region, due to the strengthening of South Atlantic subtropical anticyclone and stronger meridional gradient in low-level pressure. Besides, there is an upper-level trough (ridge) over subtropical South America indicating advection of cyclonic (anticyclonic) vorticity inducing anomalous increase (decrease) of precipitation over that region during La Niña/AAO− (La Niña/AAO+). We do not see this opposite difference within El Niño groups combined with different phases of AAO.
Funder
The European Unions Horizon 2020 research and innovation programme under the Marie Skodowska-Curie grant agreement
Max Planck Institute for the Physics of Complex Systems
Publisher
Springer Science and Business Media LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献