Optimal error analysis of MJO prediction associated with uncertainties in sea surface temperature over Indian Ocean

Author:

Li Xiaojing,Tang Youmin,Zhou Lei,Yao Zhixiong,Shen Zheqi,Li Junde,Liu Ting

Abstract

AbstractIn this study, the predictability of the Madden–Julian Oscillation (MJO) is investigated using the coupled Community Earth System Model (CESM) and the climatically relevant singular vector (CSV) method. The CSV method is an ensemble-based strategy to calculate the optimal growth of the initial error on the climate scale. We focus on the CSV analysis of MJO initialized at phase II, facilitating the investigation of the effect of the initial errors of the sea surface temperature (SST) in the Indian Ocean on it. Six different MJO events are chosen as the study cases to ensure the robustness of the results. The results indicate that for all the study cases, the optimal perturbation structure of the SST, denoted by the leading mode of the singular vectors (SVs), is a meridional dipole-like pattern between the Bay of Bengal and the southern central Indian Ocean. The MJO signal tends to be more converged and significant in the Eastern Hemisphere while the model is perturbed by leading SV. The moist static energy analysis results indicate that the eastward propagation is much more evident in the terms of vertical advection and radiation flux than others. Therefore, the SV perturbation can strengthen and converge the MJO signal mostly by increasing the vertical advection of the moist static energy. Further, the sensitivity studies indicate that the structure of the leading SV is not sensitive to the initial states, which suggests that we might not need to calculate SVs for each initial time in constructing the ensemble prediction, significantly saving computational time in the operational forecast systems.

Funder

National Key R&D Program of China

National Program on Global Change and Air-Sea Interaction

Scientific Research Fund of the Second Institute of Oceanography, MNR

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3