A Bayesian approach to exploring the influence of climate variability modes on fire weather conditions and lightning-ignited wildfires

Author:

Bates Bryson C.,Dowdy Andrew J.ORCID,McCaw Lachlan

Abstract

AbstractUnderstanding the relationships between large-scale, low-frequency climate variability modes, fire weather conditions and lighting-ignited wildfires has implications for fire-weather prediction, fire management and conservation. This article proposes a Bayesian network framework for quantifying the influence of climate modes on fire weather conditions and occurrence of lightning-ignited wildfires. The main objectives are to describe and demonstrate a probabilistic framework for identifying and quantifying the joint and individual relationships that comprise the climate-wildfire system; gain insight into potential causal mechanisms and pathways; gauge the influence of climate modes on fire weather and lightning-ignition relative to that of local-scale conditions alone; assess the predictive skill of the network; and motivate the use of techniques that are intuitive, flexible and for which user‐friendly software is freely available. A case study illustrates the application of the framework to a forested region in southwest Australia. Indices for six climate variability modes are considered along with two hazard variables (observed fire weather conditions and prescribed burn area), and a 41-year record of lightning-ignited wildfire counts. Using the case study data set, we demonstrate that the proposed framework: (1) is based on reasonable assumptions provided the joint density of the variables is converted to multivariate normal; (2) generates a parsimonious and interpretable network architecture; (3) identifies known or partially known relationships between the variables; (4) has potential to be used in a predictive setting for fire weather conditions; and (5) climate modes are more directly related to fire weather conditions than to lightning-ignition counts.

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3