Global oscillatory modes in high-end climate modeling and reanalyses

Author:

Feliks YizhakORCID,Small Justin,Ghil MichaelORCID

Abstract

AbstractInterannual oscillatory modes, atmospheric and oceanic, are present in several large regions of the globe. We examine here low-frequency variability (LFV) over the entire globe in the Community Earth System Model (CESM) and in the NCEP-NCAR and ECMWF ERA5 reanalyses. Multichannel singular spectrum analysis (MSSA) is applied to these three datasets. In the fully coupled CESM1.1 model, with its resolution of $$0.1 \times 0.1$$ 0.1 × 0.1 degrees in the ocean and $$0.25 \times 0.25$$ 0.25 × 0.25 degrees in the atmosphere, the fields analyzed are surface temperatures, sea level pressures and the 200-hPa geopotential. The simulation is 100-year long and the last 66 yr are used in the analysis. The two statistically significant periodicities in this IPCC-class model are 11 and 3.4 year. In the NCEP-NCAR reanalysis, the fields of sea level pressure and of 200-hPa geopotential are analyzed at the available resolution of $$2.5 \times 2.5$$ 2.5 × 2.5 degrees over the 68-years interval 1949–2016. Oscillations with periods of 12 and 3.6 years are found to be statistically significant in this dataset. In the ECMWF ERA5 reanalysis, the 200-hPa geopotential field was analyzed at its resolution of $$0.25 \times 0.25$$ 0.25 × 0.25 degrees over the 71-years interval 1950–2020. Oscillations with periods of 10 and 3.6 years are found to be statistically significant in this third dataset. The spatio-temporal patterns of the oscillations in the three datasets are quite similar. The spatial pattern of these global oscillations over the North Pacific and North Atlantic resemble the Pacific Decadal Oscillation and the LFV found in the Gulf Stream region and Labrador Sea, respectively. We speculate that such regional oscillations are synchronized over the globe, thus yielding the global oscillatory modes found herein, and discuss the potential role of the 11-year solar-irradiance cycle in this synchronization. The robustness of the two global modes, with their 10–12 and 3.4–3.6 years periodicities, also suggests potential contributions to predictability at 1–3 years horizons.

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

Reference117 articles.

1. Alessio SM (2015) Digital signal processing and spectral analysis for scientists: concepts and applications. Springer, Berlin

2. Alexander M et al (2010) Extratropical air-sea interaction, sea surface temperature variability, and the Pacific decadal oscillation. Climate dynamics: why does climate vary? Geophys Monogr 189:123–148

3. Allen MR, Robertson AW (1996) Distinguishing modulated oscillations from coloured noise in multivariate datasets. Clim Dyn 12(11):775–784

4. Allen MR, Smith LA (1996) Monte Carlo SSA: detecting irregular oscillations in the presence of colored noise. J Clim 9:3373–3404

5. Barlow M, Nigam S, Berbery EH (2001) Enso, pacific decadal variability, and us summertime precipitation, drought, and stream flow. J Clim 14(9):2105–2128

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3