Relationship between summer extreme precipitation anomaly in Central Asia and surface sensible heat variation on the Central-Eastern Tibetan Plateau

Author:

Wang HuiORCID,Zhang Jie,Chen Lian,Li Dongliang

Abstract

AbstractIn the context of global warming, the frequency and intensity of extreme weather and climate events have increased, especially in Central Asia (CA). In this study, we investigate the characteristics of summer extreme precipitation (SEP) in CA and its relationship with the surface sensible heat (SSH) variation over the central–eastern Tibetan Plateau (CETP). The results suggest that the distribution of SEP in CA is extremely uneven, and the SEP thresholds range from 2 to 32 mm/day, and 80% of them are concentrated in 4–10 mm/day. Both the total amount of SEP and the number of SEP days show significant increasing trends, with the climatic tendencies of 4.4 mm/decade and 0.4 day/decade, respectively. The SSH anomalies over the CETP can affect the SEP and summer drought in CA by regulating the strength of South Asia High (SAH) and the subtropical jet over CA. The strong SSH anomalies over the CETP in late spring (April–May) can be transmitted from the lower to the upper layers through the continuous heating to the atmosphere and lead to the anomalously strong subtropical high over northern Africa and the Arabian Peninsula, the anomalously weak subtropical westerly jet over CA and the anomalously strong SAH in summer. At the same time, the Ural ridge strengthens, the CA trough weakens, and the northern CA is controlled by an anomaly of warm high-pressure ridge. Therefore, the anomaly of water vapor convergence in northern CA weakens. The SEP there will be abnormally less, and the summer drought intensifies. When the SSH over CETP is anomalously weak in late spring, the key circulations are just the opposite. Furthermore, the anomalous water vapor from the Arctic, North Atlantic and western Pacific converges in northern CA and northern Xinjiang, China, which is conducive to the generation of widespread extreme precipitation and the alleviation of summer drought in these regions.

Funder

National Basic Research Program of China

the Second Tibetan Plateau Scientific Expedition and Research (STEP) program

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3