Abstract
Abstract
The treatment of stone surfaces for their protection from ageing caused by natural and anthropogenic effects is an open issue in materials development for Cultural Heritage. We thought interesting to verify the suitability of a modified cellulose biofilm filled with halloysite nanotubes as wax compatibilizers to design a protecting layer. A hydraulic mortar was selected as a stone prototype. To improve the physico-chemical properties of the covering layer, wax microparticles have been incorporated to control transport, consolidation and wettability features. In particular, different application protocols have been studied, namely brushing and spraying, to assess whether the proposed procedures can be scaled up. Colorimetric analysis has been carried out to evidence the applicability in terms of color alteration after the treatment. Water adhesion was investigated by measuring the contact angle values as a function of time to obtain information on spreading and adsorption phenomena. These physico-chemical properties have been correlated to the microstructure evidenced by both electron and optical microscopies.
Graphic abstract
Funder
AGM for CuHe
Università degli Studi di Palermo
Publisher
Springer Science and Business Media LLC
Subject
Colloid and Surface Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,General Chemistry
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献