Abstract
AbstractAdhesion of bacteria and platelets on blood-contact implants and surgical devices is one of the causes of infections and thrombus. A superhydrophobic surface serving as a protective layer can minimize adhesion and contamination due to the low surface energy. The objective of this paper is to construct a superhydrophobic surface on a titanium implant by a combination of a topological structure and chemical coating. First, a micro/nano hierarchical morphology is obtained by sandblasting, acid-etching, and anodic oxidation. Then, a low surface energy coating material (fluoroalkylsilane, as the example case in this study) is used to modify the surface further. The effects of the morphology of micro and/or nanoscales and corresponding fluorination on the wettability are investigated. The results show that a hierarchical surface with microroughness and nanotubes is successfully constructed, and the contact angle (CA) is 44.9°, indicating good hydrophilicity. Interestingly, after being modified by fluoroalkylsilane, the surface converted from hydrophilic to superhydrophobic with a CA of 151.4°. In contrast, the fluorination modification of single micro or nanofeatures cannot achieve superhydrophobicity, indicating that the micro/nanostructures may show a synergistic effect for an efficient fluorination coating later on. Overall, our results demonstrate the feasibility of achieving a superhydrophobic surface via the micro/nano topological patterning and fluorination modification. The proposed method is expected to enrich the preparation technologies of superhydrophobic titanium surfaces.
Graphic abstract
Funder
National Natural Science Foundation of China
Key Basic Research Project of Natural Science Foundation of Shandong Province
Key Technology Research and Development Program of Shandong
Publisher
Springer Science and Business Media LLC
Subject
Colloid and Surface Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,General Chemistry
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献