Preparation of superhydrophobic titanium surface via the combined modification of hierarchical micro/nanopatterning and fluorination

Author:

Wang Zhen,Ren Bing

Abstract

AbstractAdhesion of bacteria and platelets on blood-contact implants and surgical devices is one of the causes of infections and thrombus. A superhydrophobic surface serving as a protective layer can minimize adhesion and contamination due to the low surface energy. The objective of this paper is to construct a superhydrophobic surface on a titanium implant by a combination of a topological structure and chemical coating. First, a micro/nano hierarchical morphology is obtained by sandblasting, acid-etching, and anodic oxidation. Then, a low surface energy coating material (fluoroalkylsilane, as the example case in this study) is used to modify the surface further. The effects of the morphology of micro and/or nanoscales and corresponding fluorination on the wettability are investigated. The results show that a hierarchical surface with microroughness and nanotubes is successfully constructed, and the contact angle (CA) is 44.9°, indicating good hydrophilicity. Interestingly, after being modified by fluoroalkylsilane, the surface converted from hydrophilic to superhydrophobic with a CA of 151.4°. In contrast, the fluorination modification of single micro or nanofeatures cannot achieve superhydrophobicity, indicating that the micro/nanostructures may show a synergistic effect for an efficient fluorination coating later on. Overall, our results demonstrate the feasibility of achieving a superhydrophobic surface via the micro/nano topological patterning and fluorination modification. The proposed method is expected to enrich the preparation technologies of superhydrophobic titanium surfaces. Graphic abstract

Funder

National Natural Science Foundation of China

Key Basic Research Project of Natural Science Foundation of Shandong Province

Key Technology Research and Development Program of Shandong

Publisher

Springer Science and Business Media LLC

Subject

Colloid and Surface Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3