Hybrid epoxy-SiO2/GO nanosheets anti-corrosive coating for aeronautic aluminum Al6061-T5

Author:

López-Campos Jevet E. D.,Mojica-Gómez José,Maciel-Cerda Alfredo,Castaño Víctor M.,Hernández-Padrón GenovevaORCID

Abstract

AbstractThe mechanical and anti-corrosive evaluation of a hybrid epoxy resin–SiO2 and graphene oxide (GO) are presented. Three composite materials were prepared with 0%, 0.1 wt% and 0.5 wt% GO concentrations. The hybrid material was prepared by the sol-gel process incorporating the silica particles in situ within the epoxy resin (ER) matrix and previously that ER was functionalized with carboxyl groups using abietic acid and labeled as functionalized epoxy resin. The deposition of the three hybrids in aluminum 6061 substrates was made by blade coating, measuring wet and dry film thickness. The study of mechanical properties involved adhesion, pencil scratch hardness, and abrasion test methods where the incorporation of 0.5 wt% of GO improved the mechanical properties considerably. The anti-corrosive properties of the coatings were evaluated through electrochemical impedance spectroscopy and accelerated corrosion using a salt spray chamber showing that GO forms an anti-corrosive barrier increasing the operation life of the coatings in corrosive environments. Anti-ice properties were related to the contact angle measurement from which the GO concentrations showed more hydrophobic behavior. All the tests were carried out according to ASTM standards. The incorporation of 0.5% of GO showed a significant improvement in the mechanical and anti-corrosive results, improving corrosion resistance up to 500 h. The abrasion tests had an increase in 35%, its hardness up to 9H, and the wear index improved by 29.14% compared with composites with 0.1 wt% of GO and without GO. The HREF1 and HREF5 materials do present an increase in the contact angle thanks to the incorporation of graphene oxide. The results of electrochemical impedance spectroscopy and the impedance curves show a better behavior for the HREF5 composite due to the difference in resistance over time.

Publisher

Springer Science and Business Media LLC

Subject

Colloid and Surface Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Compendium of Nanomaterials for Corrosion Control;Advances in Chemical and Materials Engineering;2024-07-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3