Determining N2O and N2 fluxes in relation to winter wheat and sugar beet growth and development using the improved 15N gas flux method on the field scale

Author:

Eckei Jonas,Well Reinhard,Maier Martin,Matson Amanda,Dittert Klaus,Rummel Pauline SophieORCID

Abstract

AbstractThe objectives of this field trial were to collect reliable measurement data on N2 emissions and N2O/(N2O + N2) ratios in typical German crops in relation to crop development and to provide a dataset to test and improve biogeochemical models. N2O and N2 emissions in winter wheat (WW, Triticum aestivum L.) and sugar beet (SB, Beta vulgaris subsp. vulgaris) were measured using the improved 15N gas flux method with helium–oxygen flushing (80:20) to reduce the atmospheric N2 background to < 2%. To estimate total N2O and N2 production in soil, production-diffusion modelling was applied. Soil samples were taken in regular intervals and analyzed for mineral N (NO3 and NH4+) and water-extractable Corg content. In addition, we monitored soil moisture, crop development, plant N uptake, N transformation processes in soil, and N translocation to deeper soil layers. Our best estimates for cumulative N2O + N2 losses were 860.4 ± 220.9 mg N m−2 and 553.1 ± 96.3 mg N m−2 over the experimental period of 189 and 161 days with total N2O/(N2O + N2) ratios of 0.12 and 0.15 for WW and SB, respectively. Growing plants affected all controlling factors of denitrification, and dynamics clearly differed between crop species. Overall, N2O and N2 emissions were highest when plant N and water uptake were low, i.e., during early growth stages, ripening, and after harvest. We present the first dataset of a plot-scale field study employing the improved 15N gas flux method over a growing season showing that drivers for N2O and N2O + N2 fluxes differ between crop species and change throughout the growing season.

Funder

Deutsche Forschungsgemeinschaft

Georg-August-Universität Göttingen

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3