Interaction between water, crop residue and fertilization management on the source-differentiated nitrogen uptake by rice

Author:

Vitali AndreaORCID,Russo Federica,Moretti Barbara,Romani Marco,Vidotto FrancescoORCID,Fogliatto SilviaORCID,Celi LuisellaORCID,Said-Pullicino DanielORCID

Abstract

AbstractAlternate wetting and drying (AWD) is an effective water-saving practice for rice cultivation that may however promote nitrogen (N) losses compared to continuous flooding (CF). The interaction between water, crop residue and N fertilization management can influence the contribution of different N sources to plant uptake. We hypothesized that microbial processes driving the source-differentiated N supply for rice uptake during the early growth stages will depend on the interaction between water management, the timing of straw incorporation with respect to flooding and the temporal distribution of mineral N application. Rice was grown for 60 days in mesocosm experiment involving a factorial design with (i) two water regimes (CF vs. AWD) and (ii) three straw and fertilizer managements, during which soil N, porewater chemistry, plant growth and N uptake were evaluated. Source partitioning of plant N between fertilizer-, straw- and soil-derived N was achieved by means of a dual-stable isotope 15N tracing approach. Although AWD reduced total N uptake by about 4–25% with respect to CF, this could only be partly attributed to a lower uptake of fertilizer-N (and lower fertilizer-N use efficiency), suggesting that other N sources were affected by water management. Our findings evidence how the interaction between soil redox conditions and the availability of labile C and inorganic N strongly determined the supply of soil-derived N through microbial feedback and priming responses. Although incorporated straw contributed only minimally to rice N, it represented the primary driver controlling plant N nutrition through these microbial responses. These insights may contribute to identify suitable fertilization practices that favour plant N uptake during the early stages of rice growth under AWD.

Funder

Università degli Studi di Torino

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3