Soil effects on the plant growth inhibitory activity of S-abscisic acid

Author:

Muñoz-Muñoz María del Valle,López-Cabeza RocíoORCID,Gámiz Beatriz,Celis Rafael

Abstract

AbstractThe use of natural plant growth regulators (PGRs) as ecofriendly agrochemicals is gaining much attention, but the fate of these compounds once they enter the soil environment is poorly understood. In this work, we compared the plant growth inhibitory activity of the phytohormone S-abscisic acid (S-ABA) in the presence of three soils with that observed in soilless (Petri dish) conditions and related the differences in activity to the sorption and dissipation processes of the phytohormone in the soils. In Petri dishes, S-ABA inhibited the germination of Eruca sativa, Allium porrum, Lactuca sativa, and Hordeum vulgare with mean inhibitory concentration values (IC50) in the range of 0.5–8.2 mg/L. Eruca sativa was selected for subsequent studies based on its high sensitivity to S-ABA (IC50 = 0.5 mg/L). The inhibition of germination of E. sativa by S-ABA was fully reversible at a low phytohormone concentration (5 mg/L) and partially reversible at a higher phytohormone concentration (60 mg/L). S-ABA also inhibited the growth of pre-germinated seedlings of E. sativa, albeit at higher concentrations than those at which it inhibited germination. The three soils used in the study weakened the inhibitory activity of S-ABA by soil factors in the range of 0.008–0.380. As S-ABA displayed low or even negative sorption in the soils tested, the decrease in the activity of S-ABA was attributed to its biodegradation in the soils, rather than to a decrease in its bioavailability due to sorption. Despite the reduction in the activity of S-ABA observed in the presence of the soils, the phytohormone still expressed its activity at quite low soil concentrations (0.3–20 mg/kg), showing higher activity in soils where the compound degraded more slowly.

Funder

Ministerio de Ciencia e Innovación

Instituto de Recursos Naturales y Agrobiología Sevilla

Publisher

Springer Science and Business Media LLC

Reference45 articles.

1. Bolt GH, de Haan FAM (1979) Anion exclusion in soil. In: Bolt GH (ed) Soil chemistry B: physicochemical models. Developments in Soil Science Book Series, Vol. 5, Part B. Elsevier, Amsterdam, pp 233–257

2. Biopesticide Properties Database (BPDB, 2023), Univeristy of Hertfordshire. Available online: http://sitem.herts.ac.uk/aeru/bpdb/index.htm. Accessed 1 Nov 2023

3. Bremner JM (1996) Nitrogen-total. In: Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT, Sumner ME (eds) Methods of soil analysis: Part 3. Soil Science Society of America, Madison, WI, Chemical methods, pp 1085–1121

4. Celis R, Hermosín MC, Cox L, Cornejo J (1999) Sorption of 2,4-dichlorophenoxyacetic acid by model particles simulating naturally occurring soil colloids. Environ Sci Technol 33:1200–1206

5. Celis R, Hermosín MC, Cornejo L, Carrizosa MJ, Cornejo J (2002) Clay-herbicide complexes to retard picloram leaching in soil. Intern J Environ Anal Chem 82:503–517

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3