Pyrolysis temperature affects biochar suitability as an alternative rhizobial carrier

Author:

Shabir Rahat,Li Yantao,Megharaj Mallavarapu,Chen Chengrong

Abstract

AbstractBiochars produced from different feedstocks and at different pyrolysis temperatures may have various chemical and physical properties, affecting their potential use as alternative microbial carrier materials. In this study, biochars were produced from pine wood and oak feedstocks at various temperatures (400°C, 500°C, 600°C, 700°C and 800°C), characterized, and assessed for their potential as carriers for Bradyrhizobium japonicum (CB1809) strain. The biochars were then stored at two different storage temperatures (28°C and 38°C) for up to 90 days. Furthermore, the study also explored the role of potentially ideal carriers as inoculants in the growth of Glycine max L. (soybean) under different moisture levels i.e., 55% water holding capacity (WHC) (D0), 30% WHC (D1) and, 15% WHC (D2) using a mixture of 50% garden soil and 50% sand. The results were compared to a control group (without inoculants) and a peat inoculant. Among all the materials derived from pine wood and oak, pine wood biochar pyrolyzed at 400℃ (P-BC400) exhibited the highest CFU count, with values of 10.34 and 9.74 Log 10 CFU g− 1 after 90 days of storage at 28℃ and 38℃, respectively. This was notably higher compared to other biochars and peat carriers. Significant (p < 0.05) increases in plant properties: shoot and root dry biomass (174% and 367%), shoot and root length (89% and 85%), number of leaves (71%), membrane stability index (27%), relative water content (26%), and total chlorophyll (140%) were observed in plants treated with P-BC400 carrier inoculant compared to the control at D2; however, lower enrichment of δ13C (37%) and δ15N (108%) with highest number of root nodules (8.3 ± 1.26) and nitrogenase activity (0.869 ± 0.04) were observed under D2, as evident through PCA analysis, showing more nitrogen (N) fixation and photosynthetic activity. Overall, this experiment concluded that biochar pyrolyzed at lower temperatures, especially P-BC400, was the most suitable candidate for rhizobial inoculum and promoted soybean growth.

Funder

Griffith University

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3