Abstract
AbstractDraining peatlands for agriculture induces peat decomposition, subsidence, and carbon (C) and nitrogen (N) losses, thereby contributing to soil degradation and climate change. To sustain the agricultural productivity of these organic soils, coverage with mineral soil material has increasingly been used. To evaluate the effect of this practice on the N flows within the plant–soil system, we conducted a 15N tracer experiment on a drained peatland that was managed as an intensive meadow. This peatland was divided into two parts, either without (reference “Ref”) or with ~ 40 cm mineral soil cover (coverage “Cov”). We applied 15NH415NO3 on field plots to follow the fate of 15N in plant–soil system over 11 months. In addition, N mineralization was determined by laboratory incubation. The field experiment showed that Cov lost less 15N (p < 0.05) than Ref, even though plant 15N uptake was similar at both sites. The lower net N loss from the Cov site was accompanied by higher soil 15N retention. The laboratory incubation revealed a ~ 3 times lower N mineralization at Cov than at Ref, whereas the N release per unit soil N was around two times higher at Cov than at Ref, suggesting a faster SOM turnover rate at Cov. Overall, the mineral soil cover increased the retention of fertilizer-N in the soil, thus reducing the system N losses. Our result indicates that agricultural production on drained peatland is less harmful to the environment with mineral soil coverage than using drained peatland directly.
Funder
Bundesamt für Umwelt
China Scholarship Council
Agroscope
Publisher
Springer Science and Business Media LLC
Subject
Soil Science,Agronomy and Crop Science,Microbiology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献